Identification of N-nitrosamines in treated drinking water using nanoelectrospray ionization high-field asymmetric waveform ion mobility spectrometry with quadrupole time-of-flight mass spectrometry.
نویسندگان
چکیده
We report a nanoelectrospray ionization (nESI) with high-field asymmetric waveform ion mobility spectrometry (FAIMS) and tandem mass spectrometry (MS-MS) method for determination of small molecules of m/z 50 to 200 and its potential application in environmental analysis. Integration of nESI with FAIMS and MS-MS combines the advantages of these three techniques into one method. The nESI provides efficient sample introduction and ionization and allows for collection of multiple data from only microliters of samples. The FAIMS provides rapid separation, reduces or eliminates background interference, and improves the signal-to-noise ratio as much as 10-fold over nESI-MS-MS. The tandem quadrupole time-of-flight MS detection provides accurate mass and mass spectral measurements for structural identification. Characteristics of FAIMS compensation voltage (CV) spectra of seven nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were analyzed. The optimal CV of the nitrosamines (at DV -4000 V) were: -1.6 V, NDBA; 2.6 V, NDPA; 6.6 V, NPip; 8.8 V, NDEA; 13.2 V, NPyr; 14.4 V, NMEA; and 19.4 V, NDMA. Fragmentation patterns of the seven nitrosamines in the nESI-FAIMS-MS-MS were also obtained. The specific CV and MS-MS spectra resulted in positive identification of NPyr and NPip in a treated water sample, demonstrating the potential application of this technique in environmental analysis.
منابع مشابه
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry combined with mass spectrometry for peptide analysis.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (ultra-FAIMS) combined with mass spectrometry (MS) has been applied to the analysis of standard and tryptic peptides, derived from α-1-acid glycoprotein, using electrospray and nanoelectrospray ion sources. Singly and multiply charged peptide ions were separated in the gas phase using ultra-FAIMS and detected by ion tra...
متن کاملComparison of high-field asymmetric waveform ion mobility spectrometry with GC methods in analysis of haloacetic acids in drinking water.
Haloacetic acids (HAAs) are major byproducts of chlorination of drinking water. Electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry (ESI-FAIMS-MS) provides a tool for direct monitoring of these compounds. However, treated drinking water samples can be challenging to analyze due to the large number of chemicals present and due to matrix effects that...
متن کاملSeparation of opiate isomers using electrospray ionization and paper spray coupled to high-field asymmetric waveform ion mobility spectrometry.
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphon...
متن کاملEnhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (FAIMS) is used for the selective transmission of differential mobility-selected ions prior to in-source collision-induced dissociation (CID) and time-of-flight mass spectrometry (TOFMS) analysis. The FAIMS-in-source collision induced dissociation-TOFMS (FISCID-MS) method requires only minor modification of the ion sour...
متن کاملCharacterization of Protein Complexes and Protein Interaction Networks by Mass Spectrometry
Evaluation of the efficiency of in-gel digestion of proteins by peptide isotopic labeling and MALDI mass spectrometry. (2001) Archived polyarylamide gels as a resource for proteome characterization by mass spectrometry. Nanoelectrospray tandem mass spectrometry and sequence similarity searching for identification of proteins from organisms with unknown genomes. Methods Mol Biol 211, 221-234. A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chromatographic science
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2009